Н 34

У біржі наукових праці наведені результати наукових досліджень з різних напрямів екології. Велика кількість робот приємно підкреслює пошану підтриману науковим та громадянським станом групи, екологічним творцям формування продуктивності вирощувальних рослин та багатьох аспектів екологічної освіти.

Опубліковані роботи будуть корисними для наукових працівників, викладачів, фахівців-екологів, студентів.

РЕДАКЦІЙНА КОЛІЄВА СЕРИЙ:

1. Грабак Наум Харитонович — доктор сільськогосподарських наук, професор кафедри екології та природокористування Черновицького державного університету імені Петра Могили (м. Миколаїв) — голова редагівської колії свій серії «Екологія»; доктор сільськогосподарських наук, професор кафедри екології та природокористування Черновицького державного університету імені Петра Могили (м. Миколаїв).
2. Антохіна Лідія Павловна — доктор сільськогосподарських наук, професор кафедри екології та природокористування Черновицького державного університету імені Петра Могили (м. Миколаїв) — голова редагівської колії свій серії «Екологія».
3. Григоренко Володимир Васильович — доктор сільськогосподарських наук, професор кафедри екології та природокористування Черновицького державного університету імені Петра Могили (м. Миколаїв) — голова редагівської колії свій серії «Екологія».
4. Гордюк Олександр Петрович — доктор сільськогосподарських наук, професор кафедри екології та природокористування Черновицького державного університету імені Петра Могили (м. Миколаїв) — голова редагівської колії свій серії «Екологія».

Статті друкуються в авторській редакції

ISSN 1699-7742

© Черновицькій державний університет імені Петра Могили, 2011

АДРЕСА РЕДАКЦІЇ:
34003, м. Миколаїв, вул. 68 Десантників, 10.
Тел. (0502) 76-55-99, 76-55-81, факс: 50-00-69, 50-03-33,
E-mail: av@kma.ukr.net
ЗМІСТ

РОЗДІЛ 1. ЗАГАЛЬНА ЕКОЛОГІЯ ... 5
Добровольський В. В. Просторове представлення зв'язків у структурно-ієрархічній схемі екологічної системи .. 6

РОЗДІЛ 2. ЕКОЛОГІЯ РОСЛИН .. 11
Антипова Л. К., Ткаченко К. О. Ефективність використання гербіцидів в агроценозах із люцерною ... 12
Дробітко А. В., Нікончук Н. В. Структура рослин та урожайність кукурудзи залежно від способу сівби і густоти рослин .. 15
Захарова В. О., Хілько В. Т. Деякі аспекти вдосконалення агroteхніки вирощування насінницького матеріалу озимої пшениці 18
Качанова Т. В. Формування врожайності та хімічного складу рослин вівса під впливом добрив .. 20
Непін А. Ю. Особливості чергування хазмогамії та клейстогамії в річному та життєвому циклах розвитку представників роду Frailea Britton & Rose (Cactaceae) в умовах західного ґрунту.. 23
Гамазонова В. В., Шевель В. І. Нарощення надземної маси та формування врожайності зерна сортів проса залежно від добрив 27
Коваленко О. А., Корхова М. М. Продуктивність пшениці Triticum durum та Triticum aestivum озимих форм у різних ґрунтово-кліматичних умовах степу України ... 31
Шинкарук В. А., Коваленко О. А., Романенко В. М. Продуктивність гібридів кукурудзи та витрати на досушування зерна в умовах центральної частини Вінницької області ... 37
Федорович Г. Т. Сориз – культура високих потенційних можливостей у посушливих умовах Степу України ... 43
Олійник Л. В. Динаміка водної рослинності центральної частини Лівобережного Лісостепу України ... 47

РОЗДІЛ 3. ЕКОЛОГІЯ ТВАРИН .. 51
Дудник А. В. Популяційні цикли шкідників сільськогосподарських культур ... 52
Лісовий М. М., Чайка В. М., Бялоховська Н. Г. Ентомологічне біорізноманіття комах-герпетобіонтів агроландшафтів Лісостепу України ... 55

РОЗДІЛ 4. РОДЮЧІСТЬ І САНITАРНИЙ СТАН ҐРУНТІВ 60
Гамазонова В. В., Коваленко О. А., Панфілова А. В., Болоховський В. В.
Мікробіологічна активність ґрунту після ячменю ягрового при використанні біодеструктора стерні ... 61
Чорна Т. М., Макарова Г. А., Кравченко К. М., Гнице́вська Н. А.
Основні показники родючості ґрунтів Миколаївської області за результатами IX туру агрохімічного обстеження ... 64
Гамаюнова В. В., Шевель В. І.

НАРОСТАННЯ НАДЗЕМНОЇ МАСИ ТА ФОРМУВАННЯ ВРОЖАЙНОСТІ ЗЕРНА СОРТИВ ПРОСА ЗАЛЕЖНО ВІД ДОБРИВ

У статті наведено результати досліджень наростання надземної маси та урожайності зерна проса залежно від добрив та сортових особливостей.

Ключові слова: сорти проса, мінеральні добрива, надземна маса рослин, урожайність, розрахункови дози добрив.

В статті приведені результати ісследований по накопченню надземної маси ростенів і урожайності зерна проса в зависимости от удобрений и особенности сорта.

Ключевые слова: сорта проса, минеральные удобрения, надземная масса растений, урожайность, расчетная доза удобрений.

In the article the results of researches of growth of above-ground mass of plants and productivity of grain of millet are resulted depending on fertilizers and of high quality features.

Key words: millet varieties, fertilizers, elevated mass of plants, productivity, the estimated dose of fertilizer.

Збільшення виробництва круп'яних культур в Україні, зокрема проса, є важливою народно-господарською проблемою. Ця культура широко використовується як харчова для людей, кормова для тваринництва і має високу смакову й поживну якість.

Нарощування продуктивності даної культури залежить від багатьох чинників. Пов'язано це з тим, що в останні роки в зеленорослий галузі відбулися певні кардинальні зміни кліматичних умов, рідкість грунтів, у зв'язку з несистематичним і недостатнім за кількістю внесенням органічних і мінеральних добрив, порушеним чергуванням культур у сівозмінці, способами обробітку грунту тощо.

Через недосконалість зазначених чинників важливого значення набуває система живлення сільськогосподарських рослин. Згідно з узагальненими даними багатьох досліджників, на досягнення у можливому приrostі врожайності припадає більшою 50 %, а за оптимізації водного режиму – 75 % [1–4].

Головним завданням сучасного сільського-господарського виробництва, у т. ч. і круп'яних культур, є отримання високого, економічно обґрунтованого врожая зерна, у вирішенні якого значна роль відводиться сортів. Останній пояснює характеризуватися високою продуктивністю, адаптивністю до біотичних та абіотичних факторів середовища, які б за різних агрокліматичних умов могли забезпечити максимальну відвідну на вкладені кошти на вирощування. У кожному господарстві слід вирощувати 2-3 роства з різною тривалістю вегетаційного періоду, що дозволяє отримувати стабільний урожай незалежно від умов конкретного вегетаційного періоду, проводити збірання врожаю в оптимальні строки, отримувати високу якість зерна, зменшувати витрати на його очищення й досушування, раціонально використовувати збіральну техніку.

Селекційна робота проводиться й удосконалюється систематично, і в останні роки створені відносно нові високопродуктивні сорти проса, які є районованими та рекомендованими для зони півдня України. З такими сортами цікаво провести дослідження, у тому числі дослідити її реакцію на фони живлення, які створюють і регулюють шляхом застосування мінеральних добрив.

Грунт дослідної ділянки – чорнозем південний малогумусний, уміст в орному шарі гумусу – 3,5–3,7 %, вміст рухомих форм елементів живлення: нітратів – низький, а рухомого фосфору та обмінного
калію — середній. За зазначеної забезпеченості грунт у рухомими формами азоту, фосфору і калію, звісно ж, що віршальні значення для росту, розвитку рослин та формування ними рівня врожайності належить азоту. До схеми досліду (фактор B), окрім рекомендованої оптимальної дози мінеральних добрив, включено розрахунок, який визначали за методикою Інституту зоштовного землеробства [5] за різницею між необхідною кількістю елементів живлення на формування врожай заданого рівня та фактичним їх умістом у грунті конкретного поля, на якому культуру вирощують.

У середньому за роки досліджень для формування врожайності проса на рівні 35-40 ц/га зерна розрахункова доза добрив складала N₆₀P₃₀K₆₀, тобто забезпеченість грунт у рухомими формами N, P, K потребувала внесення лише азотного добрива, причому в значно більшій кількості від оптимальної (рекомендованої) для зони півдня України.

Результати досліджень. Проведеними дослідженнями встановлено, що створені фо́ни живлення для рослин істотно вплинули на процеси росту і розвитку сортів проса. Так максимальною висотою вирізнялися рослини за вирощування на фоні розрахункової дози добрив (рис 1). У середньому по досліджуваних сортах та за три роки вирощування без добрив у фазу повної стиглості зерна рослини досягли висоти 63,3 см, на фоні рекомендованого удобріння N₆₀P₃₀ лінійна висота збільшилася до 79,9 см, а рекомендованої дози – до 98,5 см.

Рис. 1. Вплив мінеральних добрив на лінійну висоту рослин проса у фазу повної стиглості зерна, см (середнє за 2008-2010 рр.)

Iстотно коливалась висота рослин проса й залежно від сортових особливостей. Найбільшою лінійною висотою характеризувався сорт проса Таврійське, а найменшою – сорт Східне. Так за вирощування без добрив даний показник у сорті Східне склав 56,8, сорту Костянтинівське – 63,3, а сорту Таврійське – 69,7 см. На фоні розрахункової дози добрив висота рослин зазначених сортів у фазу повної стиглості зерна відповідно склала: 86,1; 94,1 та 115,4 см.

Наші дослідження показали, що висота рослин тісно корелювала з накопиченням надземної маси сортами проса (табл. 1).

| Таблиця 1 |
| Накопичення надземної маси рослинами проса залежно від добрив та сорту на період повної стиглості зерна (середнє за 2008-2010 рр.), ц/га |

<table>
<thead>
<tr>
<th>Фен живлення (фактор В)</th>
<th>Роки досліджень</th>
<th>Середнє 2008-2010 рр.</th>
<th>Приріст по контролю</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td>Костянтинівське (фактор А)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>192,0</td>
<td>231,0</td>
<td>219,0</td>
</tr>
<tr>
<td>N₆₀P₃₀</td>
<td>261,0</td>
<td>349,0</td>
<td>359,0</td>
</tr>
<tr>
<td>Розрахункова доза добрив</td>
<td>349,0</td>
<td>489,0</td>
<td>463,0</td>
</tr>
<tr>
<td>Східне</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>174,2</td>
<td>215,0</td>
<td>202,0</td>
</tr>
<tr>
<td>N₆₀P₃₀</td>
<td>248,0</td>
<td>321,6</td>
<td>296,4</td>
</tr>
<tr>
<td>Розрахункова доза добрив</td>
<td>314,0</td>
<td>426,0</td>
<td>394,0</td>
</tr>
<tr>
<td>Таврійське</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>219,3</td>
<td>267,0</td>
<td>242,0</td>
</tr>
<tr>
<td>N₆₀P₃₀</td>
<td>284,8</td>
<td>361,2</td>
<td>379,0</td>
</tr>
<tr>
<td>Розрахункова доза добрив</td>
<td>404,0</td>
<td>541,8</td>
<td>561,0</td>
</tr>
</tbody>
</table>

Досить сильно на її утворення впливали мінеральні добрива, на які найвищець реагували сорт Таврійське. Так за вирощування проса на фоні внесення N₆₀P₃₀ у сорті Східне надземна маса збільшилася на 46,5, сорту Таврійське – на 40,7, сорту Костянтинівське – на 50,9 %, а розрахункової

Дослідження проведено на відповідних землях з субілендсько-підкислородним типом та типом биотичним середнього та підвищеного, характерної відповідно за періоди 2008-2010 рр., ц/га.
дози добувів відвідно на 91,8, 102,7 та 106,8 %. Наведені дані свідчать про реакцію проса сорту Таврійське особливо на підвищений фон азотного живлення. Різниця між сортами у накопиченні надземної маси рослин за розрахункових доз добувів була істотною: сорт Східне накопичило її 180,9 ц/га, Костянтинівське – 219,7, а Таврійське 259,4 ц/га.

Аналігічним чином досліджувані нами чинники вплинули і на рівень урожайністі зерна проса (табл. 2). Наведені фони свідчать, що внесені добуві та погодні умови років досліджень суттєво позначалися на продуктивності сортів проса. Найвищий урожай сформувався у 2008 році, а найвищим – у 2009 році; це мало негативно, порівняно з 2009 роком, була продуктивність сортів проса у 2010 році.

Таблиця 2

<table>
<thead>
<tr>
<th>Фон живлення (фактор В)</th>
<th>Роки досліджень</th>
<th>Середнє 2008-2010 рр.</th>
<th>Привід по контрольно</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Порівняння</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добувів</td>
<td>17,1</td>
<td>28,1</td>
<td>22,8</td>
<td>22,7</td>
</tr>
<tr>
<td>N₈P₈</td>
<td>23,2</td>
<td>38,4</td>
<td>29,4</td>
<td>29,7</td>
</tr>
<tr>
<td>Розрахункова доза добувів</td>
<td>28,6</td>
<td>48,2</td>
<td>46,1</td>
<td>41,0</td>
</tr>
<tr>
<td>Східне</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добувів</td>
<td>18,4</td>
<td>26,4</td>
<td>19,4</td>
<td>21,4</td>
</tr>
<tr>
<td>N₈P₈</td>
<td>24,9</td>
<td>35,9</td>
<td>30,2</td>
<td>30,3</td>
</tr>
<tr>
<td>Розрахункова доза добувів</td>
<td>29,7</td>
<td>43,8</td>
<td>40,3</td>
<td>37,9</td>
</tr>
<tr>
<td>Таврійське</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добувів</td>
<td>20,1</td>
<td>32,8</td>
<td>26,8</td>
<td>25,6</td>
</tr>
<tr>
<td>N₈P₈</td>
<td>28,6</td>
<td>42,5</td>
<td>35,1</td>
<td>35,4</td>
</tr>
<tr>
<td>Розрахункова доза добувів</td>
<td>38,8</td>
<td>61,4</td>
<td>58,4</td>
<td>52,9</td>
</tr>
<tr>
<td>Середнє по сортах</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добувів</td>
<td>18,5</td>
<td>29,1</td>
<td>23,0</td>
<td>23,5</td>
</tr>
<tr>
<td>N₈P₈</td>
<td>25,6</td>
<td>38,3</td>
<td>31,6</td>
<td>31,8</td>
</tr>
<tr>
<td>Розрахункова доза добувів</td>
<td>32,4</td>
<td>51,1</td>
<td>48,3</td>
<td>45,9</td>
</tr>
<tr>
<td>НР₈ за фактором А</td>
<td>0,8</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>НР₈ за фактором Б</td>
<td>2,1</td>
<td>3,4</td>
<td>2,8</td>
<td></td>
</tr>
<tr>
<td>НР₈ за фактором АВ</td>
<td>2,6</td>
<td>3,9</td>
<td>3,4</td>
<td></td>
</tr>
</tbody>
</table>

Прикмети: сорти – фактор А: добувів – фактор В.

Максимальною врожайністю сортів проса, як кожного оцінював, так і у середньому у всі роки досліджень формувалась за вирощування культури на фоні розрахункової дози мінерального добувів. Наприклад, за внесення рекомендованої дози мінерального добувів N₈P₈ у середньому по всіх сортах досліджень урожайність склали 31,8 ц/га, що перевищувало рівень його на неудобреному контролі на 35,3 %, а розрахункової дози добувів – 43,9 ц/га та 86,8 % відповідно.

Із досліджуваних сортів найвищим рівнем урожайність зерна виявився сорт проса Таврійське, а найнижчим – сорт Східне. Різниця у величині врожайністі зерна між сортами проса за вирощування їх без добувів була не такою значною, як на удобрених фонах і особливо за розрахункової дози добувів. Так у середньому за всі роки досліджень при внесені під культуру N₈P₈ сортом проса Східне сформувало 30,3, а сортам Таврійське – 35,4 ц/га зерна, а розрахункової дози добувів відповідно 37,9 та 52,9 ц/га. Збільшення зернової продуктивності культури залежно від значущості сорту на даних фонів вирощування склало 16,8 і 39,6 % на користь сорту Таврійське. Із наведених результатів можемо зазначити, що останні значно сильніше реагнули на фон живлення і більшою мірою підвищують врожайність від одиниці до і тисячі зерно добувів. Сорт проса Таврійське у всі роки досліджень виявився найвищим, а найбільш пластичним та стабільнішим у вирощуванні та в спроможності формувати високу врожайність.

Таким чином, просо є культурою, яка в умовах південного Східу України за вирощування в основному посіві здатна формувати врожайність за середньої забезпеченості чорнозему південними рухомими формами фосфору й калію і низької азоту навіть без унеможлив добрив на рівні 21,4-25,6 ц/га, а за їх унесення і особливо у розрахунковій дозі, яку визначають з різницею між необхідною кількістю елементів живлення для запланованого рівня врожайністі та фактичним їх умістом у грунті конкретного посіву, – 37,9-52,9 ц/га, залежно від сорту.

Ця культура повинна займати значні більші площі і особливо за умови потепління клімату як досягти посухо- та жаростійкі та така, що спроможна при цьому формувати стабільну продуктивність.

ЛІТЕРАТУРА

Рецензенти: Базалій В. В., д.с.-г.н., професор;
Чорний С. Г., д.с.-г.н., професор.

© Гамазонова В. В., Шевель В. І., 2011

Стаття надійшла до редколегії 08.11.2010 р.

30
МІКРОБІОЛОГІЧНА АКТИВНІСТЬ ГРУНТУ ПІСЛЯ ЯЧМЕНЮ ЯРОГО ПРИ ВИКОРИСТАННІ БІОДЕСТРУКТОРА СТЕРНІ

У статті представлено дані щодо мікробіологічної активності грунту після ячміння ярового при використанні біодеструктора стерні в умовах дослідного поля МДАУ з наведенням показників загальної бактерізації, грибної та азотофіксуючої мікрофлори грунту, а також стану грунтового розчину при застосуванні біодеструктора стерні.

Ключові слова: біодеструктор, ячмінь, мікроорганізми, поліпшене обробітко грунту, безполісовий обробіток грунту, доза добрив.

В статті представлені дані щодо мікробіологічної активності почв після ячміння ярового при використанні біодеструктора стерні в умовах дослідного поля НГАУ з наведенням показників загальної бактерізації, грибної та азотофіксуючої мікрофлори почв, а також стану грунтового розчину при застосуванні біодеструктора стерні.

Ключові слова: біодеструктор, ячмінь, мікроорганізми, отримання і безпобітовий обробіток почв, доза добрив.

In the article presented data on the microbiological activity of soil after spring barley using biodestructors stubble in the test field MSAU with bringing the total figures bacterization, mushroom microflora and azotofiksatoriv soil, and also the state of the ground solution, at application Biodestructor of stubble.

Key words: biodestructors, barley, microorganisms, moldboard and moldboardless tillage, fertilizer rate.

Постановка проблеми. Стан ґрунту – це не тільки агрохімічна оцінка, а й мікробіологічний контроль за формованим мікробним інгредієнтом як одного із чутливих діагностичних критеріїв різноманітності ґрунту. Адже мікробні ґрунти формуються на основі агрофіоронів, і будь-яке хіміко-технічне навантаження ґрунту може супроводжуватися змінами його структурно-функціональних особливостей, збільшенням видового складу, зниженням або випаданням із цеонозу агрономічно корисних груп мікроорганізмів [1; 5]. Мікробіологічне діагностування ґрунту дає можливість визначити реакцію окремих популяцій мікроорганізмів на неприятливі умови (техногенне забруднення ґрунту тощо) та обґрунтувати доцільність усіх заходів, спрямованих на втручання ґрунтової рідкісності [6].

Стиль виявлення проблеми. Найяскравішою властивістю ґрунтів є їх рідкість, яка залежить від наявності гумусу – найдійшого компонента ґрунту. Матеріалом для утворення гумусу є органічні речовини. Наприклад, збереження рослинних решток, на протязі їх традиційного спалювання, допомагає збагачити хімічну складову ґрунту органікою та слугує живленню й активізації діяльності біоти. Найактивнішу роль у цьому відіграють мікроорганізми, які здатні продукувати ферменти, що руйнують лігніну, целюлозу, клітковину, білки рослинних залишків [1]. Крім того, мікроорганізми активно мобілізують, тобто переводять у розчинні форму, мінеральні ґрунту: фосфор, кальцій, сірку, фосфор, бор, молібден, цинк, залізо та ін. [2]. Трансформація органічної речовини мікроорганізмами зумовлює підвищення біологічної активності ґрунту.

Серед основних задач аграріїв на сьогодні є відтворення щебенистих ґрунтів з постійним підтримуванням активного фоуну їх корисної мікрофлори обробкою ґрунту та рослинних решток мікробними препаратами. З цією метою ми вивчили ефективність дії біодеструктора стерні та його вплив на мікробний інгредієнт ґрунту.

Комплексній за складом і ефективний за дією біопрепарат "Біодеструктор стерні" призначений для обробки стерні і ґрунту після збирання злакових культур, кукурудзи, сорго, бобових та інших культур, а також сидератів безпосередньо перед дискуючим або оранжевим [7]. На відміну від традиційної технології (спалювання або звільнення рослинних залишків), біодеструктор прискорює розкладання рослинних залишків, не знищуючи підлину органіку; покращує родючість ґрунту; підвищує продуктивність сільськогосподарських культур на 10-30%.
попереджає розвиток патогенних мікроорганізмів і шкідників грунту.

Методику дослідження. Дослідження здійснювали на досліджуваному полі Миколаївського ДАУ на чорноземі південному. Після збирання ячення якого-сь обробляли біодеструктором у золі 2 літрі води біопрепарату з додаванням 30 кг аміачної селитри та витрачаючи робочо розчину 300 літрів на 1 га. Схема досліду включала наступні варіанти:

- спосіб обробітку грунту (фактор А): безобробмати; поліпшення обробку;
- система удобрения (фактор В): без добрив; N2P2O5, N2p2O5; розрахункова доза;
- перед обробкою стерильного препарату (21.07.2009 р.) були відбрані зразки грунту для мікробіологічного аналізу. Наступний строк відбору грунту відбувся в кінці жовтня.

Результати досліджень. Результати мікробіологічного аналізу грунту зі стерильною ячення якого-сь перед обробкою біодеструктором показують, що загальна кількість бактерій у досліджуваних шарах грунту була найменшою у варіанті поліпшеного обробітку грунту на фоні удобрения N2P2O5 і в шарі грунту 0-10 см складає 2,3·10⁶ штук на 1 г грунту, а найбільшою була при поліпшенному обробітку грунту без добрив – 5,1·10⁶ штук на 1 г грунту. У шарі грунту 10-20 см найвищими показники були у варіанті поліпшеного обробітку грунту та дозою добрив N2P2O5 (4,5·10⁶), а найменшими – 2,1·10⁶ у варіанті поліпшеного обробітку з розрахунковою дозою добрив (табл. 1). Після обробки біодеструктором у грунті збільшилась кількість грибів, більшість яких мала ізотермічну активність. Їх кількість у шарі грунту 0-10 см у варіанті безполіпшеного обробітку грунту без добрив становіла 4,7·10⁶ і 6·10⁶ штук на 1 г грунту – у варіанті поліпшеного обробітку грунту з розрахунковою дозою добрив. У шарі грунту 10-20 см цей показник відповідно склав 7·10⁶ (поліпшений обробітку грунту без добрив) та 4·10⁶ (безполіпшеный обробітку грунту + розрахункова доза добрив).

Кількість азотофіксуючих мікроорганізмів у шарі грунту 0-10 см найменшою була в варіантах безполіпшеного обробітку грунту з розрахунковою дозою добрив і становила 9,2·10⁶ штук на 1 г грунту, а найбільшою – 3,3·10⁶ штук на 1 г грунту на фоні поліпшеного обробітку грунту без добрив.

У шарі грунту 10-20 см кількість азотофіксуючих мікроорганізмів коливалася від 1,8·10⁶ штук на 1 г грунту (безполіпшений обробітку грунту + розрахункова доза добрив) до 3,7·10⁶ штук на 1 г грунту (поліпшений обробітку грунту без добрив).

Кількість аеробних азотофіксуючих мікроорганізмів, у тому числі Azotobacter, найбільшою була в варіанті поліпшеного обробітку грунту з розрахунковою дозою добрив (0-10 см) і становила 2,0·10⁶ штук на 1 г грунту, найменшою – 8,5·10⁶ штук на 1 г грунту у варіанті безполіпшеного обробітку грунту без добрив (0-10 см).

У деяких варіантах було виявлено аязіеробний азотофіксатор роду Clostridium. Найбільше його було у грунті безполіпшеного обробітку грунту як без добрив, так і з їх унесенням у дозі N2P2O5.

Дани лабораторних джерел свідчать, що у шарі грунту 0-10 cm кількість мікроорганізмів є більшою, ніж у шарі 10-20 cm [3; 4]. Отриманий нами результати показали аналогічну залежність.

Таблиця 1

<table>
<thead>
<tr>
<th>Варіанти досліду</th>
<th>Показник</th>
<th>Доза обробки</th>
<th>Показник</th>
<th>Доза обробки</th>
<th>Показник</th>
<th>Доза обробки</th>
<th>Показник</th>
<th>Доза обробки</th>
<th>Показник</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Загальна бактерія, шт./л грунту</td>
<td>Грибів мікрофлора, шт./л грунту</td>
<td>Азотофіксатори, шт./л грунту</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поліпшений обробітку грунту</td>
<td>Без добрив</td>
<td>5,1·10⁶</td>
<td>1,3·10⁷</td>
<td>5,7·10⁶</td>
<td>2,0·10⁶</td>
<td>3,3·10⁶</td>
<td>7,0·10⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без поліпшения</td>
<td>3,2·10⁶</td>
<td>2,4·10⁷</td>
<td>7,6·10⁷</td>
<td>4,0·10⁶</td>
<td>2,6·10⁷</td>
<td>1,1·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розрахункова доза</td>
<td>3,9·10⁶</td>
<td>1,5·10⁷</td>
<td>6,0·10⁷</td>
<td>6,0·10⁷</td>
<td>2,9·10⁷</td>
<td>2,0·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Безполіпшений обробітку грунту</td>
<td>Без добрив</td>
<td>4,8·10⁶</td>
<td>1,1·10⁷</td>
<td>4,7·10⁷</td>
<td>2,0·10⁷</td>
<td>3,0·10⁷</td>
<td>8,5·10⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>2,3·10⁷</td>
<td>1,3·10⁷</td>
<td>1,2·10⁷</td>
<td>1,0·10⁷</td>
<td>2,6·10⁷</td>
<td>1,0·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розрахункова доза</td>
<td>3,4·10⁷</td>
<td>1,5·10⁷</td>
<td>2,0·10⁷</td>
<td>1,2·10⁷</td>
<td>9,2·10⁷</td>
<td>1,2·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поліпшенений обробітку грунту</td>
<td>Без добрив</td>
<td>2,3·10⁷</td>
<td>5,0·10⁷</td>
<td>7,0·10⁷</td>
<td>7,0·10⁷</td>
<td>3,7·10⁷</td>
<td>5,7·10⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>4,5·10⁷</td>
<td>8,3·10⁷</td>
<td>1,1·10⁷</td>
<td>2,0·10⁷</td>
<td>2,9·10⁷</td>
<td>8,7·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розрахункова доза</td>
<td>2,1·10⁷</td>
<td>1,0·10⁷</td>
<td>1,3·10⁷</td>
<td>3,5·10⁷</td>
<td>5,1·10⁷</td>
<td>1,7·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Безнікохіллний обробітку грунту</td>
<td>Без добрив</td>
<td>2,9·10⁷</td>
<td>8,0·10⁷</td>
<td>1,0·10⁷</td>
<td>6,0·10⁷</td>
<td>6,9·10⁷</td>
<td>9,0·10⁷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без добрив</td>
<td>3,5·10⁷</td>
<td>9,0·10⁷</td>
<td>1,4·10⁷</td>
<td>7,2·10⁷</td>
<td>2,5·10⁷</td>
<td>4,9·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розрахункова доза</td>
<td>2,4·10⁷</td>
<td>7,5·10⁷</td>
<td>4,0·10⁷</td>
<td>1,0·10⁷</td>
<td>1,8·10⁷</td>
<td>1,6·10⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Загальна кількість мікроорганізмів та їх окремих угруповень (амоніфікаторів, ацетоніфікаторів, грибів) більшою мірою виявляє у шарі ґрунту 0-10 см. Кількість стернових форм, навпаки, — у шарі ґрунту 10-20 см.

Обробка біодеструктором стерні і ґрунту після збирання ячменю ярого дещо підвищувала pH ґрунтового розчину і сприяла наближенню його значення до нейтрального і слабкоазольного (рис. 1, 2).

Рис. 1. Зміна реакції ґрунтового розчину залежно від застосування біодеструктора стерні (0-10 см)

Рис. 2. Зміна реакції ґрунтового розчину залежно від застосування біодеструктора стерні (10-20 см)

Висновки. Таким чином, проведена діагностика мікробіологічної активності ґрунту з поживними рештками до і після обробки біодеструктором стерні дозволило вивчити еколого-трофічні групи мікроорганізмів, цритмамию чорноземам південним. При цьому встановлено позитивний вплив біодеструктора стерні на мікробіологічні показники ґрунту на початковому етапі розкладу органічної речовини ґрунту. Країнними показниками характеризувався ґрунт за поліщівської обробку на фоні розрахункової дози добрив. Доцільно провести подальші дослідження динаміки змін ґрунтової біоти на дослідній ділянці.

Література

Рецензенти: Салатенко В. Н. — д.е.н., професор;
Поліщук І. С. — к.с.-г.н., доцент.

© Гамаюнова В. В., Коваленко О. А., Паніфілова А. В., Волоховський В. В., 2011

Стаття надійшла до редколегії 26.01.2011 р.